

NCCS Brown

Bag Series

Programming on the Intel MIC

(Many Integrated Core) Architecture:

An Introduction

Chongxun (Doris) Pan

doris.pan@nasa.gov

January 29, 2013

Agenda

Discover SCU8 augmentation

What is MIC?

MIC Programming Considerations

Offload vs. Native

Demo

This is the first talk in the NCCS MIC tutorial series. Additional
presentations will be upcoming on related topics.

Users can look at various documents and tutorial videos offered
by Intel

http://software.intel.com/mic-developer

3

http://software.intel.com/mic-developer
http://software.intel.com/mic-developer
http://software.intel.com/mic-developer
http://software.intel.com/mic-developer

Some (confusing) Terminologies First

MIC: Intel Many Integrated Core (MIC) architecture

Xeon: Intel Xeon Processors, product codes named Nehalem,
Westmere, Sandy Bridge (SNB), etc.

Xeon Phi: Intel Xeon Phi coprocessors using the MIC
architecture, the first product code name: Knights Corner
(KNC)

Vectorization: The process of transforming a scalar
instruction that acts on single data element at a time (SISD),
to a vector instruction that acts on multiple data elements at
once (SIMD)

4

Discover SCU8

Discover SCU8 augmentation includes

Intel Xeon Sandy Bridge processors: ~160 TFLOPS (480 nodes)

Intel Xeon Phi coprocessors:

~ 400 TFLOPS (480 KNC nodes)

SCU8 will be available to general users soon

Stage 1 (since Jan 23): SCU8 is open for limited user testing

Stage 2: SCU8 will be placed in a test queue for general user
testing. Because the InfiniBand OFED software stack upgrade will
be completed on SCU8 first, users will have to recompile their
codes to run on SCU8

Stage 3: SCU8 in full production

Details/Time tables will be provided in announcements and the
User Forum

5

Intel MIC Overview

Programming for Xeon Phi is similar to that for Xeon

Many slower x86 cores, but allow for more compute throughput

Any code can run on Xeon Phi coprocessors, not just kernels

Specs for SCU8 KNC coprocessors

60+ cores with 4 hardware threads/core on each coprocessor

Wide vector (SIMD) registers for more FP throughput

KNC - 512 bit vectors vs. SNB - 256 bit vectors

Cores interconnected by a high-speed bidirectional ring

Cores clocked at 1GHz

Coherent L1 and L2 caches

512 KB L2 cache locally with high-speed access to all other
caches

8GB GDDR5 memory per coprocessor

6

Intel MIC Overview – Software Architecture

7

Coprocessors vs. Accelerators -- Similarities

Intel calls MIC “coprocessors”, and GPUs are often called
“Accelerators”

Similarities

Fast GDDR5 memory

Connected to the host through PCI-E bus. Two physical IP
address spaces for the host and the MIC/GPU

Containing a large number of cores

Applications that show positive performance with GPUs
should always benefit with Xeon Phi because of the same
fundamentals of vectorization or bandwidth.

8

Coprocessors vs. Accelerators -- Differences

Architecture:

HPC Programming model:

MPI and Threading:

Programming details

Support for any code (serial/parallel) and scripting

9

x86 vs. streaming processors

Coherent caches vs. shared memory and caches

Extension to C/C++/Fortran.

OpenCL support upcoming

vs. CUDA / OpenCL

MPI and OpenMP vs. Hardware threads

MPI on host and on MIC vs. MPI on host only

Running natively or offloaded regions vs. Kernels

Yes vs. No

Will my code run on the Xeon Phi coprocessors?

10

Well, very likely…

But, in getting an

application ready to

benefit from the

Xeon Phi, nothing is

more important than

scaling of the

application

MIC Programming Considerations

Xeon and Xeon Phi have different design goals. Xeon Phi is
not intended to replace Xeon

It specializes in running highly parallel and vectorized code

Not optimized for processing serial code

Not all applications can benefit from the capability of an Xeon
Phi

Very short tasks are not optimal for offload to the coprocessor

Costs that you need to amortize to make it worthwhile:

Overhead of code and data transfer to the coprocessor

Overhead of thread creation

KNC comes with 8GB of memory total

So you trade off program space accessible to your code with
offloading data transfer space

11

MIC Programming Considerations (Cont’d)

Code porting is easy, although building some libraries can be
a real pain

Getting performance on MIC requires

Highly parallelized applications

Scaling to 100+ threads will be ideal

Making strong use of vector units

Programmer’s effort on tuning and optimization

“Optimize once, Run everywhere”

Tuning on Xeon Phi, for scaling, vectorization, and memory
usage, will all benefit the application when running on the Xeon
processors

12

How to involve Xeon Phi in an application?

Host Only Offload Native (Phi

only)

Native (Host

and Phi)

Xeon (Host) Program foo

 call bar()

End

Program foo

 call bar()

End

--

Program foo

 call bar

End

Xeon Phi

(Target) -- bar ()

Program foo

 call bar

End

Program foo

 call bar

End

13

Currently Native model is not supported on SCU8 during the
testing phases. In time it may change

Heterogeneous (Offload) Model Native Model

• Better serial processing

• More memory

• Better file access

• Makes fuller use of available

resources

• Almost no code change

• More constraints in memory
footprint and I/O

• Maybe useful for quick
testing

Native vs. Offload

An MPI program can be structured using either model

Processor-centric “offload” model where the program is viewed as
running all MPI ranks on host processors and offloading select
work to Phi

Native model with MPI ranks on both host and Phi

A few Considerations using the Native model for MPI program

Fitting problems into the smaller memory on the Phi

Overhead of data transfers that favor minimization of
communication to and from the Phi

Workload balancing between “big cores” on the host and “little
cores” on the Phi

An offload model can be attractive

14

Offload

The offload model for Xeon Phi is quite rich

Interoperable with OpenMP

Able to manage multiple coprocessor cards

Able to offload complex program components

Two types of offload:

1. Compiler Assisted offload (CAO):

Explicit control using offload pragmas/directives and
keywords to make sections of code run on the Phi

2. Automatically Offload (AO): Using some Intel MKL library
routines

15

Compiler Assisted Offload (CAO)

Similar to adding parallelism to serial code using OpenMP
directives or Intel Cilk Plus keywords

Intel expects a future version of OpenMP will include offload
directives

Again, offload only the highly-parallel vectorized code

Heterogeneous Compiler

Builds a heterogeneous binary that runs on both the host and Phi

Adds code to transfer data automatically to the Phi and to start
your code running (with no extra coding on your part)

The resulting binary runs whether or not a coprocessor is present

16

Offload Compiler/Execution Concept

17

Offload – Data Transfer

Offload via Explicit Data

Copying

Offload via Implicit Data

Copying

Meaning … Emulate shared data by copying

back and forth at point of offload

Maintain coherence in a range of

virtual addresses on host and

Phi, automatically in software

Language Support Fortran, C, C++ C, C++

Syntax Pragmas/Directives:

•!dir$ [omp] offload in
Fortran

•#pragma offload in C/C++

Keywords:

 _Cilk_shared and

_Cilk_offload

Used for … Offloads that transfer contiguous

blocks of data

Offloads that transfer all or parts

of complex data structures, or

many small pieces of data

Data has to be copied between host and Phi because they do
not share a common memory

Two techniques are available:

18

Fortran Syntax for Offload

19

Compiler Directives

!DIR$ [OMP] OFFLOAD TARGET(MIC) …

Offloads the following OpenMP block or function call

!DIR$ OFFLOAD BEGIN TARGET(MIC)…

 !DIR$ END OFFLOAD

Offloads a group of statements

All procedures that will execute on the Phi must be declared
as targeted for offload. Therefore,

In both the callee (required) and the caller (recommended), add:

!DIR$ ATTRIBUTES OFFLOAD:MIC :: foo

Offloaded data must be scalars, arrays or bit-wise copyable
derived types (no embedded pointers or allocatable arrays)

Excludes most Fortran 2003 object-oriented constructs

Implicit copying is not supported in Fortran

Automatic Offload (AO) using Intel MKL

For a selective set of AO-enabled routines (the list should
expand in future MKL updates)

Offloading is automatic and transparent

MKL decides:

When to offload

Work division between host and targets

Users enjoy host and Phi parallelism automatically

20

Host Side

User’s App

Intel® MIC Side

Intel® MIC

optimized

Intel® MKL Intel® MKL Worker

process

Host Optimized

Intel® MKL

Transparent load

balancing

Intel® MIC support stack

Hetero Intel®

MKL library

Automatic Offload (AO) using Intel MKL

Easy to use:
Call a function “mkl_mic_enable” before calling MKL functions;

or

Set an environmental variable

setenv MKL_MIC_ENABLE 1

When a MIC card is not connected, it just runs on the host as
usual without any penalty

You can control the workload after AO is enabled
call mkl_mic_set_workdivision(MKL_TARGET_HOST, 0, 0.5); or

setenv MKL_HOST_WORKDIVISION 50

Compiled Assisted Offload can be used with MKL routines to
provide more control

A big advantage is to reduce overhead by data persistence
-- Reusing transferred data for multiple operations

21

CAO Example using Intel MKL routines

// Transfer matrices A, B, and C to coprocessor and do not de-allocate matrices A and B

#pragma offload target(mic) \

in(transa, transb, M, N, K, alpha, beta, LDA, LDB, LDC) \

in(A:length(NCOLA * LDA) free_if(0)) \

in(B:length(NCOLB * LDB) free_if(0)) \

inout(C:length(N * LDC))

{

sgemm(&transa, &transb, &M, &N, &K, &alpha, A, &LDA, B, &LDB, &beta, C, &LDC);

}

// Transfer matrix C1 to coprocessor and reuse matrices A and B

#pragma offload target(mic) \

in(transa1, transb1, M, N, K, alpha1, beta1, LDA, LDB, LDC1) \

nocopy(A:length(NCOLA * LDA) alloc_if(0) free_if(0)) \

nocopy(B:length(NCOLB * LDB) alloc_if(0) free_if(0)) \

inout(C1:length(N * LDC1))

{

sgemm(&transa1, &transb1, &M, &N, &K, &alpha1, A, &LDA, B, &LDB, &beta1, C1, &LDC1);

}

// Deallocate A and B on the coprocessor

#pragma offload target(mic) \

nocopy(A:length(NCOLA * LDA) free_if(1)) \

nocopy(B:length(NCOLB * LDB) free_if(1)) \ { }

22

0: false

1: true

Thread Controlling

Avoid using the OS core of the Phi, which is for handling data
transfer and housekeeping tasks

Example: on a 60-core Phi coprocessor, max threads usable is 236.

setenv MIC_KMP_AFFINITY “explicit,granularity=fine,
proclist=[1-236:1]”

 Also, set the thread affinity on the host

setenv KMP_AFFINITY “granularity=fine,compact”

Different env-variables on host and Phi:

setenv MIC_ENV_PREFIX MIC

setenv OMP_NUM_THREADS 16

setenv MIC_OMP_NUM_THREADS 236

23

Thank You!

Demo

micinfo/miccheck

Offload model. Compile and run a few programs

More tutorials to come …
Intel MPI on MIC

Language Extensions for Offload

Maximize Vectorization

Performance analysis with VTune Amplifier

Performance tuning for MIC

24

